Abstract

Compressive sampling techniques can effectively reduce the acquisition costs of high-dimensional signals by utilizing the fact that typical signals of interest are often sparse in a certain domain. For compressive samplers, the number of samples M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sub> needed to reconstruct a sparse signal is determined by the actual sparsity order S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nz</sub> of the signal, which can be much smaller than the signal dimension N. However, S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nz</sub> is often unknown or dynamically varying in practice, and the practical sampling rate has to be chosen conservatively according to an upper bound S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> of the actual sparsity order in lieu of S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nz</sub> , which can be unnecessarily high. To circumvent such wastage of the sampling resources, this paper introduces the concept of sparsity order estimation, which aims to accurately acquire S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nz</sub> prior to sparse signal recovery, by using a very small number of samples M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> less than M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sub> . A statistical learning methodology is used to quantify the gap between M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sub> and M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> in a closed form via data fitting, which offers useful design guideline for compressive samplers. It is shown that M <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> ≥ 1.2S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nz</sub> log(N/S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nz</sub> + 2) + 3 for a broad range of sampling matrices. Capitalizing on this gap, this paper also develops a two-step compressive spectrum sensing algorithm for wideband cognitive radios as an illustrative application. The first step quickly estimates the actual sparsity order of the wide spectrum of interest using a small number of samples, and the second step adjusts the total number of collected samples according to the estimated signal sparsity order. By doing so, the overall sampling cost can be minimized adaptively, without degrading the sensing performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call