Abstract
We present a new image reconstruction method for Electrical Capacitance Tomography (ECT). ECT image reconstruction is generally ill-posed because the number of measurements is small whereas the image dimensions are large. Here, we present a sparsity-inspired approach to achieve better ECT image reconstruction from the small number of measurements. Our approach for ECT image reconstruction is based on Total Variation (TV) regularization. We apply an efficient Split-Bregman Iteration (SBI) approach to solve the problem. We also propose three metrics to evaluate image reconstruction performance, i.e., a joint metric of positive reconstruction rate (PRR) and false reconstruction rate (FRR), correlation coefficient, and a shape and location metric. The results on both synthetic and real data show that the proposed TV-SBI method can better preserve the edges of images and better resolve different objects within reconstructed images, as compared to a representative state-of-the-art ECT image reconstruction algorithm, Projected Landweber Iteration with Linear Back Projection initialization (LBP-PLI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.