Abstract

In this paper, the two-dimensional (2-D) direction-of-arrival (DOA) estimation problem is explored for the sum-difference co-array (SDCA) generated by the virtual aperture expansion of co-prime planar arrays (CPPA). Since the SDCA has holes, this usually causes the maximum virtual aperture of CPPA to be unavailable. To address this issue, we propose a complex-valued, sparse matrix recovery-based 2-D DOA estimation algorithm for CPPA via enhanced matrix completion. First, we extract the difference co-arrays (DCA) from SDCA and construct the co-array interpolation model via nuclear norm minimization to initialize the virtual uniform rectangular array (URA) that does not contain the entire rows and columns of holes. Then, we utilize the shift-invariance structure of the virtual URA to construct the enhanced matrix with a two-fold Hankel structure to fill the remaining empty elements. More importantly, we apply the alternating direction method of the multipliers (ADMM) framework to solve the enhanced matrix completion model. To reduce the computational complexity of the traditional vector-form, sparse recovery algorithm caused by the Kronecker product operation between dictionary matrices, we derive a complex-valued sparse matrix-recovery model based on the fast iterative shrinkage-thresholding (FISTA) method. Finally, simulation results demonstrate the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.