Abstract
As a new direction for computed tomography (CT) imaging, inverse-geometry CT (IGCT) has been recently introduced and is intended to overcome limitations in conventional cone-beam CT (CBCT) such as the cone-beam artifacts, imaging dose, temporal resolution, scatter, cost, and so on. While the CBCT geometry consists of X-rays emanating from a small focal spot and collimated toward a larger detector, the IGCT geometry employs a large-area scanned source array with the Xray beams collimated toward a smaller-area detector. In this research, we explored an effective IGCT reconstruction algorithm based on the total-variation (TV) minimization method and studied the feasibility of the IGCT geometry for potential applications to fast, low-dose volumetric dental X-ray imaging. We implemented the algorithm, performed systematic simulation works, and evaluated the imaging characteristics quantitatively. Although much engineering and validation works are required to achieve clinical implementation, our preliminary results have demonstrated a potential for improved volumetric imaging with reduced dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.