Abstract
The time-frequency (TF) analysis is an effective tool in seismic signal processing. The sparsity-based TF transforms have been widely used to obtain high localized TF representations in recent past years. These TF transforms formulate a sparse TF representation as an inverse optimization problem using simple mathematical models, which are typically based on a hand-crafted prior knowledge. Unlike the traditional sparsity-based TF transforms, the supervised deep learning (DL)-based sparse TF representations don’t require this prior knowledge and instead use a large amount of labeled data set, which is difficult to label for seismic data. In this study, to bridge the gap between the traditional sparsity-based transforms and the supervised DL-based transforms, we propose a DL-based sparse TF analysis approach based on a physically informed autoencoder model, named the SparseTFNet. The proposed SparseTFNet includes two modules: a convolutional neural networks (CNN)-based encoder and a traditional inverse TF representation-based decoder. The CNN-based encoder is implemented by training the inverse optimization problem in the absence of the “ground-truth" TF representation, which can be trained with only seismic traces. The traditional inverse short time Fourier transform (STFT) is utilized as the decoder module in this study, which is used as a physical constraint to ensure the high accuracy of the calculated TF representation. Finally, after training and validating the proposed model using the noise-free and noisy synthetic seismic traces, the model is applied to three-dimensional (3D) offshore seismic data. The results show that the proposed SparseTFNet model has good performance in the delineation of the depositional fluvial channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.