Abstract

We study to generate novel views of indoor scenes given sparse input views. The challenge is to achieve both photorealism and view consistency. We present SparseGNV: a learning framework that incorporates 3D structures and image generative models to generate novel views with three modules. The first module builds a neural point cloud as underlying geometry, providing scene context and guidance for the target novel view. The second module utilizes a transformer-based network to map the scene context and the guidance into a shared latent space and autoregressively decodes the target view in the form of discrete image tokens. The third module reconstructs the tokens back to the image of the target view. SparseGNV is trained across a large-scale indoor scene dataset to learn generalizable priors. Once trained, it can efficiently generate novel views of an unseen indoor scene in a feed-forward manner. We evaluate SparseGNV on real-world indoor scenes and demonstrate that it outperforms state-of-the-art methods based on either neural radiance fields or conditional image generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call