Abstract

The burgeoning field of astrophotonics, the interface between astronomy and photonics, is redefining astronomical instrumentation to replace traditional bulk optical systems with integrated optics. This drives the development of a new promising photonics-integrated interferometric imaging technique, called the segmented planar imaging detector for electro-optical reconnaissance (SPIDER). Compared to conventional imaging systems, SPIDER can reduce the size, weight, and power (SWaP) by one to two orders of magnitude for an equivalent imaging resolution in virtue of photonics-integrated technology. However, SPIDER has a dense lens distribution and tens of separated narrow wavebands demultiplexed by array waveguide gratings. In this paper, we developed a new simplified sparse-aperture photonics-integrated interferometer (SPIN) imaging system. The SPIN imaging system was no more a Michelson configuration interferometer as SPIDER and was designed as a Fizeau configuration interferometer imaging system. This transfer of configuration type affords a more concise structure; the SPIN was designed with much less apertures and fewer wavebands than those of SPIDER. Further, the SPIN yields enhanced modulation transfer function and imaging quality with equivalent aperture diameter, compared with SPIDER. The main barrier of this transfer is the elimination of coupling restriction at the tip of a waveguide, namely the apodization effect. This effect, which is caused by the coupling effect between Fourier lens and waveguide, hinders SPIN imaging systems from getting finer resolution. However, a microscope could be used to eliminate this effect. Moreover, a waveguide array is used to receive these finer details and enlarges the field of view in SPIN. The coupling efficiency of the waveguides and crosstalk errors between waveguides of array were analyzed, which are important for proper parameters setting in SPIN imaging system. Based on these analyses, the imaging principle was derived and a hyper-Laplacian-based imaging reconstruction algorithm was developed. A simulation of the SPIN imaging system with seven apertures and one imaging waveband demonstrated the high imaging quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.