Abstract

Sparse-view computed tomography (CT) is an important way to reduce the negative effect of radiation exposure in medical imaging by skipping some X-ray projections. However, due to violating the Nyquist/Shannon sampling criterion, there are severe streaking artifacts in the reconstructed CT images that could mislead diagnosis. Noting the ill-posedness nature of the corresponding inverse problem in a sparse-view CT, minimizing an energy functional composed by an image fidelity term together with properly chosen regularization terms is widely used to reconstruct a medical meaningful attenuation image. In this paper, we propose a regularization, called the box-constrained nonlinear weighted anisotropic total variation (box-constrained NWATV), and minimize the regularization term accompanying the least square fitting using an alternative direction method of multipliers (ADMM) type method. The proposed method is validated through the Shepp-Logan phantom model, alongisde the actual walnut X-ray projections provided by Finnish Inverse Problems Society and the human lung images. The experimental results show that the reconstruction speed of the proposed method is significantly accelerated compared to the existing $ L_1/L_2 $ regularization method. Precisely, the central processing unit (CPU) time is reduced more than 8 times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.