Abstract

Spectral computed tomography (CT)-reconstructed images often exhibit severe noise and artifacts, which compromise the practical application of spectral CT imaging technology. Methods that use tensor dictionary learning (TDL) have shown superior performance, but it is difficult to obtain a high-quality pre-trained global tensor dictionary in practice. In order to resolve this problem, this paper develops an algorithm called tensor decomposition with total generalized variation (TGV) for sparse-view spectral CT reconstruction. In the process of constructing tensor volumes, the proposed algorithm utilizes the non-local similarity feature of images to construct fourth-order tensor volumes and uses Canonical Polyadic (CP) tensor decomposition instead of pre-trained tensor dictionaries to further explore the inter-channel correlation of images. Simultaneously, introducing the TGV regularization term to characterize spatial sparsity features, the use of higher-order derivatives can better adapt to different image structures and noise levels. The proposed objective minimization model has been addressed using the split-Bregman algorithm. To assess the performance of the proposed algorithm, several numerical simulations and actual preclinical mice are studied. The final results demonstrate that the proposed algorithm has an enormous improvement in the quality of spectral CT images when compared to several existing competing algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call