Abstract
Background and objective: Neural network based image reconstruction methods are becoming increasingly popular. However, limited training data and the lack of theoretical guarantees for generalizability raised concerns, especially in biomedical imaging applications. These challenges are known to lead to an unstable reconstruction process that poses significant problems in biomedical image reconstruction. In this paper, we present a new framework that uses untrained generator networks to tackle this challenge, leveraging the structure of deep networks for regularizing solutions based on a technique known as Deep Image Prior (DIP).Methods: To achieve a high reconstruction accuracy, we propose a framework optimizing both the latent vector and the weights of a generator network during the reconstruction process. We also propose the corresponding reconstruction strategies to improve the stability and convergent performance of the proposed framework. Furthermore, instead of calculating forward projection in each iteration, we propose implementing its normal operator as a convolutional kernel under parallel beam geometry, thus greatly accelerating the calculation.Results: Our experiments show that the proposed framework has significant improvements over other state-of-the-art conventional, pre-trained, and untrained methods under sparse-view, limited-angle, and low-dose conditions.Conclusions: Applying to parallel beam X-ray imaging, our framework shows advantages in speed, accuracy, and stability of the reconstruction process. We also show that the proposed framework is compatible with all differentiable regularizations that are commonly used in biomedical image reconstruction literature. Our framework can also be used as a post-processing technique to further improve the reconstruction generated by any other reconstruction methods. Furthermore, the proposed framework requires no training data and can be adjusted on-demand to adapt to different conditions (e.g. noise level, geometry, and imaged object).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.