Abstract
To identify disease-associated taxa is an important task in metagenomics. To date, many methods have been proposed for feature selection and prediction. However, those proposed methods are either using univariate (generalized) regression approaches to get the corresponding P-values without considering the interactions among taxa, or using lasso or L0 type sparse modeling approaches to identify taxa with best predictions without providing P-values. To the best of our knowledge, there are no available methods that consider taxon interactions and also generate P-values.In this paper, we propose a treatment-effect model for identifying taxa (STEMIT) and performing statistical inference with high-dimensional metagenomic data. STEMIT will provide a P-value for a taxon through a two-step treatment-effect maximization. It will provide causal inference if the study is a clinical trial. We first identify taxa associated with the treatment-effect variable and the targeting feature with sparse modeling, and then estimate the P-value of the targeting gene with ordinary least square (OLS) regression. We demonstrate that the proposed method is efficient and can identify biologically important taxa with a real metagenomic data set. The software for L0 sparse modeling can be downloaded at https://cran.r-project.org/web/packages/l0ara/ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.