Abstract

Target detection is one of the most important applications in hyperspectral remote sensing image analysis. However, the state-of-the-art machine-learning-based algorithms for hyperspectral target detection cannot perform well when the training samples, especially for the target samples, are limited in number. This is because the training data and test data are drawn from different distributions in practice and given a small-size training set in a high-dimensional space, traditional learning models without the sparse constraint face the over-fitting problem. Therefore, in this paper, we introduce a novel feature extraction algorithm named sparse transfer manifold embedding (STME), which can effectively and efficiently encode the discriminative information from limited training data and the sample distribution information from unlimited test data to find a low-dimensional feature embedding by a sparse transformation. Technically speaking, STME is particularly designed for hyperspectral target detection by introducing sparse and transfer constraints. As a result of this, it can avoid over-fitting when only very few training samples are provided. The proposed feature extraction algorithm was applied to extensive experiments to detect targets of interest, and STME showed the outstanding detection performance on most of the hyperspectral datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.