Abstract
Starting with the seminal papers of Reynolds (1987), Vicsek et al. (1995), Cucker–Smale (2007), there has been a lot of recent works on models of self-alignment and consensus dynamics. Self-organization has so far been the main driving concept of this research direction. However, the evidence that in practice self-organization does not necessarily occur (for instance, the achievement of unanimous consensus in government decisions) leads to the natural question of whether it is possible to externally influence the dynamics in order to promote the formation of certain desired patterns. Once this fundamental question is posed, one is also faced with the issue of defining the best way of obtaining the result, seeking for the most "economical" way to achieve a certain outcome. Our paper precisely addressed the issue of finding the sparsest control strategy in order to lead us optimally towards a given outcome, in this case the achievement of a state where the group will be able by self-organization to reach an alignment consensus. As a consequence, we provide a mathematical justification to the general principle according to which "sparse is better": in order to achieve group consensus, a policy maker not allowed to predict future developments should decide to control with stronger action the fewest possible leaders rather than trying to act on more agents with minor strength. We then establish local and global sparse controllability properties to consensus. Finally, we analyze the sparsity of solutions of the finite time optimal control problem where the minimization criterion is a combination of the distance from consensus and of the ℓ1-norm of the control. Such an optimization models the situation where the policy maker is actually allowed to observe future developments. We show that the lacunarity of sparsity is related to the codimension of certain manifolds in the space of cotangent vectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.