Abstract

Uncovering acquired drug resistance mechanisms has garnered considerable attention as drug resistance leads to treatment failure and death in patients with cancer. Although several bioinformatics studies developed various computational methodologies to uncover the drug resistance mechanisms in cancer chemotherapy, most studies were based on individual or differential gene expression analysis. However the single gene-based analysis is not enough, because perturbations in complex molecular networks are involved in anti-cancer drug resistance mechanisms. The main goal of this study is to reveal crucial molecular interplay that plays key roles in mechanism underlying acquired gastric cancer drug resistance. To uncover the mechanism and molecular characteristics of drug resistance, we propose a novel computational strategy that identified the differentially regulated gene networks. Our method measures dissimilarity of networks based on the eigenvalues of the Laplacian matrix. Especially, our strategy determined the networks' eigenstructure based on sparse eigen loadings, thus, the only crucial features to describe the graph structure are involved in the eigenanalysis without noise disturbance. We incorporated the network biology knowledge into eigenanalysis based on the network-constrained regularization. Therefore, we can achieve a biologically reliable interpretation of the differentially regulated gene network identification. Monte Carlo simulations show the outstanding performances of the proposed methodology for differentially regulated gene network identification. We applied our strategy to gastric cancer drug-resistant-specific molecular interplays and related markers. The identified drug resistance markers are verified through the literature. Our results suggest that the suppression and/or induction of COL4A1, PXDN and TGFBI and their molecular interplays enriched in the Extracellular-related pathways may provide crucial clues to enhance the chemosensitivity of gastric cancer. The developed strategy will be a useful tool to identify phenotype-specific molecular characteristics that can provide essential clues to uncover the complex cancer mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.