Abstract

Electrocardiogram (ECG) signal enhancement and QRS complex detection is a critical preprocessing step for further heart disease analysis and diagnosis. In this paper, we propose a sparse representation-based ECG signal enhancement and QRS complex detection algorithm. Unlike traditional Fourier or wavelet transform-based methods, which use fixed bases, the proposed algorithm models the ECG signal as the superposition of a few inner structures plus additive random noise, where these structures (referred to here as atoms) can be learned from the input signal or a training set. Using these atoms and their properties, we can accurately approximate the original ECG signal and remove the noise and other artifacts such as baseline wandering. Additionally, some of the atoms with larger kurtosis values can be modified and used as an indication function to detect and locate the QRS complexes in the enhanced ECG signals. To demonstrate the robustness and efficacy of the proposed algorithm, we compare it with several state-of-the-art ECG enhancement and QRS detection algorithms using both simulated and real-life ECG recordings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.