Abstract

In this paper, we propose sparse representation of FIR (Finite Impulse Response) feedback filters in delta-sigma modulators. The filter has a sparse structure, that is, only a few coefficients are non-zero, that stabilizes the feedback modulator, and minimizes the maximum magnitude of the noise transfer function at low frequencies. The optimization is described as an ℓ1 minimization with linear matrix inequalities (LMIs), based on the generalized KYP (Kalman-Yakubovich-Popov) lemma. A design example is shown to illustrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.