Abstract

With the increasing use of surveillance cameras, face recognition is being studied by many researchers for security purposes. Although high accuracy has been achieved for frontal faces, the existing methods have shown poor performance for occluded and corrupt images. Recently, sparse representation based classification (SRC) has shown the state-of-the-art result in face recognition on corrupt and occluded face images. Several researchers have developed extended SRC methods in the last decade. This paper mainly focuses on SRC and its extended methods of face recognition. SRC methods have been compared on the basis of five issues of face recognition such as linear variation, non-linear variation, undersampled, pose variation, and low resolution. Detailed analysis of SRC methods for issues of face recognition have been discussed based on experimental results and execution time. Finally, the limitation of SRC methods have been listed to help the researchers to extend the work of existing methods to resolve the unsolved issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.