Abstract

Sparse representation has been used to fuse high-resolution panchromatic (HRP) and low-resolution multispectral (LRM) images. However, the approach faces the difficulty that the dictionary is generated from the high-resolution multispectral (HRM) images, which are unknown. In this letter, a two-step method is proposed to train the dictionary from the HRP and LRM images. In the first step, coarse HRM images are obtained by additive wavelet fusion method. The initial dictionary is composed of randomly sampled patches from the coarse HRM images. In the second step, a linear constraint K-SVD method is designed to train the dictionary to improve its representation ability. Experimental results using QuickBird and IKONOS data indicate that the trained dictionary yields comparable fusion products with raw-patch-dictionary sampled from HRM images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.