Abstract
Acoustic channel estimation is an important problem in various applications. Unlike many existing channel estimation techniques that need known probe or training signals, this paper develops a blind multipath channel identification algorithm. The proposed approach is based on the single-input multiple-output model and exploits the sparse multichannel structure. Three sparse representation algorithms, namely, matching pursuit, orthogonal matching pursuit, and basis pursuit, are applied to the blind sparse identification problem. Compared with the classical least squares approach to blind multichannel estimation, the proposed scheme does not require that the channel order be exactly determined and it is robust to channel order selection. Moreover, the ill-conditioning induced by the large delay spread is overcome by the sparse constraint. Simulation results for deconvolution of both underwater and room acoustic channels confirm the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.