Abstract

Analyzing and predicting the development of foliar nutrient concentrations are important and challenging tasks in environmental monitoring. This article presents how linear sparse regression models can be used to represent the relations between different foliar nutrient concentration measurements of coniferous trees in consecutive years. In the experiments the models proved to be capable of providing relatively good and reliable predictions of the development of foliage with a considerably small number of regressors. Two methods for estimating sparse models were compared to more conventional linear regression models. Differences in the prediction accuracies between the sparse and full models were minor, but the sparse models were found to highlight important dependencies between the nutrient measurements better than the other regression models. The use of sparse models is, therefore, advantageous in the analysis and interpretation of the development of foliar nutrient concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.