Abstract

Real industrial processes usually are equipped with onboard control or diagnostic systems and limit to store a complicated model. Also, measurement samples from real processes are contaminated with noises of different statistical characteristics and are produced by one-by-one way. In this case, learning algorithms with better learning performance and compact model for systems with noises of various statistics are necessary. This paper proposes a new online extreme learning machine (ELM) algorithm, namely, sparse recursive least mean p-power ELM (SRLMP-ELM). In SRLMP-ELM, a novel cost function, i.e., the sparse least mean p-power (SLMP) error criterion, provides a mechanism to update the output weights sequentially and automatically tune some parameters of the output weights to zeros. The SLMP error criterion aims to minimize the combination of the mean p-power of the errors and a sparsity penalty constraint of the output weights. For real industrial system requirements, the proposed on-line learning algorithm is able to provide more higher accuracy, compact model, and better generalization ability than ELM and online sequential ELM, whereas the non-Gaussian noises impact the processes, especially impulsive noises. Simulations are reported to demonstrate the performance and effectiveness of the proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call