Abstract
The statistical analysis of high dimensional data requires new techniques, extending results from nonparametric statistics, analysis, probability, approximation theory, and theoretical computer science. The main problem is how to unveil, (or to mimic performance of) sparse models for the data. Sparsity is generally meant in terms of the number of variables included, but may also be described in terms of smoothness, entropy, or geometric structures. A key objective is to adapt to unknown sparsity, yet keeping computational feasibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.