Abstract

A new non-linear optimization approach is proposed for the sparse reconstruction of log-conductivities in current density impedance imaging. This framework comprises of minimizing an objective functional involving a least squares fit of the interior electric field data corresponding to two boundary voltage measurements, where the conductivity and the electric potential are related through an elliptic PDE arising in electrical impedance tomography. Further, the objective functional consists of a L 1 regularization term that promotes sparsity patterns in the conductivity and a Perona-Malik anisotropic diffusion term that enhances the edges to facilitate high contrast and resolution. This framework is motivated by a similar recent approach to solve an inverse problem in acousto-electric tomography. Several numerical experiments and comparison with an existing method demonstrate the effectiveness of the proposed method for superior image reconstructions of a wide-variety of log-conductivity patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.