Abstract
We develop a new model and algorithm for machine learning-based learning analytics, which estimate a learner's knowledge of the concepts underlying a domain. Our model represents the probability that a learner provides the correct response to a question in terms of three factors: their understanding of a set of underlying concepts, the concepts involved in each question, and each question's intrinsic difficulty. We estimate these factors given the graded responses to a set of questions. We develop a bi-convex algorithm to solve the resulting SPARse Factor Analysis (SPARFA) problem. We also incorporate user-defined tags on questions to facilitate the interpretability of the estimated factors. Experiments with synthetic and real-world data demonstrate the efficacy of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.