Abstract
Prefix sums are a powerful technique to answer range-sum queries over multi-dimensional arrays in O(1) time by looking up a constant number of values in an array of size O(N), where N is the number of cells in the multi-dimensional array. However, the technique suffers from O(N) update and storage costs. Relative prefix sums address the high update costs by partitioning the array into blocks, thereby breaking the dependency between cells.In this paper, we present sparse prefix sums that exploit data sparsity to reduce the high storage costs of relative prefix sums. By building upon relative prefix sums, sparse prefix sums achieve the same update complexity as relative prefix sums. The authors of relative prefix sums erroneously claimed that the update complexity is O(N) for any number of dimensions. We show that this claim holds only for two dimensions, whereas the correct complexity for an arbitrary number of d dimensions is O(Nd−1d). To reduce the storage costs, the sparse prefix sums technique exploits sparsity in the data and avoids to materialize prefix sums for empty rows and columns in the data grid; instead, look-up tables are used to preserve constant query time. Sparse prefix sums are the first approach to achieve O(1) query time with sub-linear storage costs for range-sum queries over sparse low-dimensional arrays. A thorough experimental evaluation shows that the approach works very well in practice. On the tested real-world data sets the storage costs are reduced by an order of magnitude with only a small overhead in query time, thus preserving microsecond-fast query answering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.