Abstract
Polynomial chaos expansion (PCE) is widely used by engineers and modelers in various engineering fields for uncertainty analysis. The computational cost of full PCE is unaffordable for the “curse of dimensionality” of the expansion coefficients. In this paper, a new method for developing sparse PCE is proposed based on the diffeomorphic modulation under observable response preserving homotopy (D-MORPH) algorithm. D-MORPH is a regression technique, it can construct the full PCE models with model evaluations much less than the unknown coefficients. This technique determines the unknown coefficients by minimizing the least-squared error and an objective function. For the purpose of developing sparse PCE, an iterative reweighted algorithm is proposed to construct the objective function. As a result, the objective in D-MORPH regression is converted to minimize the ℓ1 norm of PCE coefficients, and the sparse PCE is established after the proposed algorithm converges to the optimal value. To validate the performance of the developed methodology, several benchmark examples are investigated. The accuracy and efficiency are compared to the well-established least angle regression (LAR) sparse PCE, and results show that the developed method is superior to the LAR-based sparse PCE in terms of efficiency and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.