Abstract
In many complex diseases, the transition process from the healthy stage to the catastrophic stage does not occur gradually. Recent studies indicate that the initiation and progression of such diseases are comprised of three steps including healthy stage, pre-disease stage, and disease stage. It has been demonstrated that a certain set of trajectories can be observed in the genetic signatures at the molecular level, which might be used to detect the pre-disease stage and to take necessary medical interventions. In this paper, we propose two optimization-based algorithms for extracting the dynamic network biomarkers responsible for catastrophic transition into the disease stage, and to open new horizons to reverse the disease progression at an early stage through pinpointing molecular signatures provided by high-throughput microarray data. The first algorithm relies on meta-heuristic intelligent search to characterize dynamic network biomarkers represented as a complete graph. The second algorithm induces sparsity on the adjacency matrix of the genes by taking into account the biological signaling and metabolic pathways, since not all the genes in the ineractome are biologically linked. Comprehensive numerical and meta-analytical experiments verify the effectiveness of the results of the proposed approaches in terms of network size, biological meaningfulness, and verifiability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.