Abstract

Combination of parallel transmission and sparse pulse is able to shorten the excitation by using both the coil sensitivity and sparse k-space, showing improved fast excitation capability over the use of parallel transmission alone. However, to design an optimal k-space trajectory for sparse parallel transmission is a challenging task. In this work, a randomly perturbed sparse k-space trajectory is designed by modifying the path of a spiral trajectory along the sparse k-space data, and the sparse parallel transmission RF pulses are subsequently designed based on this optimal trajectory. This method combines the parallel transmission and sparse spiral k-space trajectory, potentially to further reduce the RF transmission time. Bloch simulation of 90° excitation by using a four channel coil array is performed to demonstrate its feasibility. Excitation performance of the sparse parallel transmission technique at different reduction factors of 1, 2, and 4 is evaluated. For comparison, parallel excitation using regular spiral trajectory is performed. The passband errors of the excitation profiles of each transmission are calculated for quantitative assessment of the proposed excitation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.