Abstract

An optimal control problem for a semilinear heat equation with distributed control is discussed, where two-sided pointwise box constraints on the control and two-sided pointwise mixed control-state constraints are given. The objective functional is the sum of a standard quadratic tracking type part and a multiple of the L1-norm of the control that accounts for sparsity. Under a certain structural condition on almost active sets of the optimal solution, the existence of integrable Lagrange multipliers is proved for all inequality constraints. For this purpose, a theorem by Yosida and Hewitt is used. It is shown that the structural condition is fulfilled for all sufficiently large sparsity parameters. The sparsity of the optimal control is investigated. Eventually, higher smoothness of Lagrange multipliers is shown up to Hölder regularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.