Abstract

We develop an approach for sparse representations of gaussian process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian on-line algorithm, together with a sequential construction of a relevant subsample of the data that fully specifies the prediction of the GP model. By using an appealing parameterization and projection techniques in a reproducing kernel Hilbert space, recursions for the effective parameters and a sparse gaussian approximation of the posterior process are obtained. This allows for both a propagation of predictions and Bayesian error measures. The significance and robustness of our approach are demonstrated on a variety of experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.