Abstract
The widespread deployment of deep nets in practical applications has lead to a growing desire to understand how and why such black-box methods perform prediction. Much work has focused on understanding what part of the input pattern (an image, say) is responsible for a particular class being predicted, and how the input may be manipulated to predict a different class. We focus instead on understanding which of the internal features computed by the neural net are responsible for a particular class. We achieve this by mimicking part of the neural net with an oblique decision tree having sparse weight vectors at the decision nodes. Using the recently proposed Tree Alternating Optimization (TAO) algorithm, we are able to learn trees that are both highly accurate and interpretable. Such trees can faithfully mimic the part of the neural net they replaced, and hence they can provide insights into the deep net black box. Further, we show we can easily manipulate the neural net features in order to make the net predict, or not predict, a given class, thus showing that it is possible to carry out adversarial attacks at the level of the features. These insights and manipulations apply globally to the entire training and test set, not just at a local (single-instance) level. We demonstrate this robustly in the MNIST and ImageNet datasets with LeNet5 and VGG networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.