Abstract
ABSTRACTCone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, and it has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. However, the XLCT imaging suffers from a severe ill-posed problem. In this work, a sparse nonconvex Lp (0 < p < 1) regularization was utilized for the efficient reconstruction for early detection of small tumour in CB-XLCT imaging. Specifically, we transformed the non-convex optimization problem into an iteratively reweighted scheme based on the L1 regularization. Further, an iteratively reweighted split augmented lagrangian shrinkage algorithm (IRW_SALSA-Lp) was proposed to efficiently solve the non-convex Lp (0 < p < 1) model. We studied eight different non-convex p-values (1/16, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8) in both 3D digital mouse experiments and in vivo experiments. The results demonstrate that the proposed non-convex methods outperform L2 and L1 regularization in accurately recovering sparse targets in CB-XLCT. And among all the non-convex p-values, our Lp(1/4 < p < 1/2) methods give the best performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.