Abstract

ABSTRACTCone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, and it has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. However, the XLCT imaging suffers from a severe ill-posed problem. In this work, a sparse nonconvex Lp (0 < p < 1) regularization was utilized for the efficient reconstruction for early detection of small tumour in CB-XLCT imaging. Specifically, we transformed the non-convex optimization problem into an iteratively reweighted scheme based on the L1 regularization. Further, an iteratively reweighted split augmented lagrangian shrinkage algorithm (IRW_SALSA-Lp) was proposed to efficiently solve the non-convex Lp (0 < p < 1) model. We studied eight different non-convex p-values (1/16, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8) in both 3D digital mouse experiments and in vivo experiments. The results demonstrate that the proposed non-convex methods outperform L2 and L1 regularization in accurately recovering sparse targets in CB-XLCT. And among all the non-convex p-values, our Lp(1/4 < p < 1/2) methods give the best performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call