Abstract
Network embedding is an important pre-process for analysing large scale information networks. Several network embedding algorithms have been proposed for unsigned social networks. However, these methods cannot be simply migrate to signed social networks which have both positive and negative relationships. In this paper, we present our signed social network embedding model which is based on the word embedding model. To deal with two kinds of links, we define two relationships: neighbour relationship and common neighbour relationship, as well as design a bias random walk procedure. In order to further improve interpretation of the representation vectors, the follow-proximally-regularized-leader online learning algorithm is introduced to the traditional word embedding framework to acquire sparse representations. Extensive experiments were carried out to compare our algorithm with three state-of-the-art methods for community detection and sign prediction tasks. The experimental results demonstrate that our algorithm performs better than the comparison algorithms on most signed social networks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Ambient Intelligence and Humanized Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.