Abstract
Recent research of sparse signal representation has aimed at learning discriminative sparse models instead of purely reconstructive ones for classification tasks, such as sparse representation based classification (SRC) which obtains state-of-the-art results in face recognition. In this paper, a new method is proposed in that direction. With the assumption of locally linear embedding, the proposed method achieves the classification goal via sparse neighbor representation, combining the reconstruction property, sparsity and discrimination power. The experiments on several data sets are performed and results show that the proposed method is acceptable for nonlinear data sets. Further, it is argued that the proposed method is well suited for the classification of low dimensional data dimensionally reduced by dimensionality reduction methods, especially the methods obtaining the low dimensional and neighborhood preserving embeddings, and it costs less time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.