Abstract
In this work, an efficient numerical scheme is presented for seismic blind deconvolution in a multichannel scenario. The proposed method iterate with wo steps: first, wavelet estimation across all channels and second, refinement of the reflectivity estimate simultaneously in all channels using sparse deconvolution. The reflectivity update step is formulated as a basis pursuit denoising problem and a sparse solution is obtained with the spectral projected-gradient algorithm - faithfulness to the recorded traces is constrained by the measured noise level. Wavelet re-estimation has a closed form solution when performed in the frequency domain by finding the minimum energy wavelet common to all channels. Nothing is assumed known about the wavelet apart from its time duration. In tests with both synthetic and real data, the method yields sparse reflectivity series and stable wavelet estimates results compared to existing methods with significantly less computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.