Abstract

Cognitive radio (CR) requires spectrum sensing over a broad frequency band. One of the crucial tasks in CR is to sample wideband signal at high sampling rate. In this paper, we propose an acquisition receiver with a co-prime sampling technique for wideband sparse signals, which occupy a small part of band range. In this proposed acquisition receiver, we use two low speed analog-to-digital converters (ADCs) to capture a common sparse multiband signal, whose band locations are unknown. The two ADCs are synchronously clocked at co-prime sampling rates. The obtained samples are re-sequenced into a group of uniform sequences with low rate. We derive the mathematical model for the receiver in the frequency domain and present its signal reconstruction algorithm. Compared with the existing sub-Nyquist sampling techniques, such as multi-coset sampling and modulated wideband converter, the proposed approach has a simple system architecture and can be implemented with only two samplers. Experimental results are reported to demonstrate the feasibility and advantage of the proposed model. For sparse multiband signal with unknown spectral support, the proposed system requires a sampling rate much lower than Nyquist rate while producing satisfactory reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.