Abstract
Abstract Efficient parallel multiplication of sparse matrices is key to enabling many large-scale calculations. This article presents the DBCSR (Distributed Block Compressed Sparse Row) library for scalable sparse matrix–matrix multiplication and its use in the CP2K program for linear-scaling quantum-chemical calculations. The library combines several approaches to implement sparse matrix multiplication in a way that performs well and is demonstrably scalable. Parallel communication has well-defined limits. Data volume decreases with O ( 1 / P ) with increasing process counts P and every process communicates with at most O ( P ) others. Local sparse matrix multiplication is handled efficiently using a combination of techniques: blocking elements together in an application-relevant way, an autotuning library for small matrix multiplications, cache-oblivious recursive multiplication, and multithreading. Additionally, on-the-fly filtering not only increases sparsity but also avoids performing calculations that fall below the filtering threshold. We demonstrate and analyze the performance of the DBCSR library and its various scaling behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.