Abstract

Previous studies have demonstrated the benefits of PLDA–SVM scoring with empirical kernel maps for i-vector/PLDA speaker verification. The method not only performs significantly better than the conventional PLDA scoring and utilizes the multiple enrollment utterances of target speakers effectively, but also opens up opportunity for adopting sparse kernel machines in PLDA-based speaker verification systems. This paper proposes taking the advantages of empirical kernel maps by incorporating them into a more advanced kernel machine called relevance vector machines (RVMs). The paper reports extensive analyses on the behaviors of RVMs and provides insight into the properties of RVMs and their applications in i-vector/PLDA speaker verification. Results on NIST 2012 SRE demonstrate that PLDA–RVM outperforms the conventional PLDA and that it achieves a comparable performance as PLDA–SVM. Results also show that PLDA–RVM is much sparser than PLDA–SVM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.