Abstract

Brain-computer interfaces (BCIs) make humancomputer interaction more natural, especially for people with neuro-muscular disabilities. Among various data acquisition modalities the electroencephalograms (EEG) occupy the most prominent place due to their non-invasiveness. In this work, a method based on sparse kernel machines is proposed for the classification of motor imagery (MI) EEG data. More specifically, a new sparse prior is proposed for the selection of the most important information and the estimation of model parameters is performed using the bayesian framework. The experimental results obtained on a benchmarking EEG dataset for MI, have shown that the proposed method compares favorably with state of the art approaches in BCI literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call