Abstract

The relevance vector machine(RVM) is a state-of-the-art constructing sparse regression kernel model [1,2,3,4]. It not only generates a much sparser model but provides better generalization performance than the standard support vector machine (SVM). In RVM and SVM, relevance vectors (RVs) and support vectors (SVs) are both selected from the input vector set. This may limit model flexibility. In this paper we propose a new sparse kernel model called Relevance Units Machine (RUM). RUM follows the idea of RVM under the Bayesian framework but releases the constraint that RVs have to be selected from the input vectors. RUM treats relevance units as part of the parameters of the model. As a result, a RUM maintains all the advantages of RVM and offers superior sparsity. The new algorithm is demonstrated to possess considerable computational advantages over well-known the state-of-the-art algorithms.KeywordsSupport Vector MachineMean Square ErrorLatent Variable ModelRelevance Vector MachineSparse ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.