Abstract

In computational electromagnetics, the multilevel fast multipole algorithm (MLFMA) is used to reduce the computational complexity of the matrix vector product operations. In iteratively solving the dense linear systems arising from discretized hybrid integral equations, the sparse approximate inverse (SAI) preconditioning technique is employed to accelerate the convergence rate of the Krylov iterations. We show that a good quality SAI preconditioner can be constructed by using the near part matrix numerically generated in the MLFMA. The main purpose of this study is to show that this class of the SAI preconditioners are effective with the MLFMA and can reduce the number of Krylov iterations substantially. Our experimental results indicate that the SAI preconditioned MLFMA maintains the computational complexity of the MLFMA, but converges a lot faster, thus effectively reduces the overall simulation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call