Abstract

The concept of a recently proposed small-scale interferometric optical imaging device, an instrument known as the Segmented Planar Imaging Detector for Electro-optical Reconnaissance (SPIDER), is of great interest for its possible applications in astronomy and space science. Due to low weight, low power consumption, and high resolution, the SPIDER telescope could replace the large space telescopes that exist today. Unlike traditional optical interferometry the SPIDER accurately retrieves both phase and amplitude information, making the measurement process analogous to a radio interferometer. State of the art sparse radio interferometric image reconstruction techniques have been gaining traction in radio astronomy and reconstruct accurate images of the radio sky. In this work we describe algorithms from radio interferometric imaging and sparse image reconstruction and demonstrate their application to the SPIDER concept telescope through simulated observation and reconstruction of the optical sky. Such algorithms are important for providing high fidelity images from SPIDER observations, helping to power the SPIDER concept for scientific and astronomical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.