Abstract

Variable stars play a crucial role as standard candles and provide valuable insights into stellar physics. They can be modeled either through fully fledged hydrodynamical simulations or analytically as systems of coupled differential equations describing the evolution of relevant physical quantities. Typically, such equations are arrived at by simplified physical assumptions concerning the conservation laws governing stellar interiors. Here we apply a data-driven technique—sparse identification of nonlinear dynamics (SINDy)—to automatically learn governing equations from observed light curves. We apply SINDy to 3100 light curves of three different variable types from the Catalina Sky Survey. The success rate depends systematically on variable type, with possible implications for variable star classification; however, it does not obviously depend on amplitude or period. Successful models can be reduced to the generalized Lienard equation . Members of the Lienard class of ordinary differential equations, such as the well-studied van der Pol oscillator, already saw some application to variable star modeling. For a, b = 0 the equation can be solved exactly, and it admits both periodic and nonperiodic solutions. We find a condition on the coefficients of the general equation for the presence of a limit cycle, which is also observed numerically in several instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.