Abstract

An efficient nonlinear equalizer based on the pruning I/Q-joint deep neural network (DNN) is proposed and experimentally demonstrated to mitigate the nonlinearity in a photonics-assisted millimeter-wave (MMW) system with a high-order 256 quadrature-amplitude-modulation (QAM) format. Experimental findings reveal that implementing pruning on the I/Q-joint DNN can compress the computational overhead by 32% while accommodating 256-QAM E-band MMW transmission for a net throughput of 66.67 Gbps with 20.21% less complexity than the traditional Volterra nonlinear equalizer. Compared with the I/Q dual DNN with the same complexity, a 16% pruning ratio improvement is enabled by a robust pruning I/Q-joint DNN that further deciphers the I/Q relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.