Abstract
Mader proved that every strongly k-connected n-vertex digraph contains a strongly k-connected spanning subgraph with at most 2kn - 2k2 edges, where equality holds for the complete bipartite digraph DKk,n-k. For dense strongly k-connected digraphs, this upper bound can be significantly improved. More precisely, we prove that every strongly k-connected n-vertex digraph D contains a strongly k-connected spanning subgraph with at most kn + 800k(k + Δ(D)) edges, where Δ(D) denotes the maximum degree of the complement of the underlying undirected graph of a digraph D. Here, the additional term 800k(k + Δ(D)) is tight up to multiplicative and additive constants. As a corollary, this implies that every strongly k-connected n-vertex semicomplete digraph contains a strongly k-connected spanning subgraph with at most kn + 800k2 edges, which is essentially optimal since 800k2 cannot be reduced to the number less than k(k - 1)/2.We also prove an analogous result for strongly k-arc-connected directed multigraphs. Both proofs yield polynomial-time algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.