Abstract

Toric (or sparse) elimination theory is a framework developped during the last decades to exploit monomial structures in systems of Laurent polynomials. Roughly speaking, this amounts to computing in a \emph{semigroup algebra}, \emph{i.e.} an algebra generated by a subset of Laurent monomials. In order to solve symbolically sparse systems, we introduce \emph{sparse Gr\"obner bases}, an analog of classical Gr\"obner bases for semigroup algebras, and we propose sparse variants of the $F_5$ and FGLM algorithms to compute them. Our prototype "proof-of-concept" implementation shows large speed-ups (more than 100 for some examples) compared to optimized (classical) Gr\"obner bases software. Moreover, in the case where the generating subset of monomials corresponds to the points with integer coordinates in a normal lattice polytope $\mathcal P\subset\mathbb R^n$ and under regularity assumptions, we prove complexity bounds which depend on the combinatorial properties of $\mathcal P$. These bounds yield new estimates on the complexity of solving $0$-dim systems where all polynomials share the same Newton polytope (\emph{unmixed case}). For instance, we generalize the bound $\min(n_1,n_2)+1$ on the maximal degree in a Gr\"obner basis of a $0$-dim. bilinear system with blocks of variables of sizes $(n_1,n_2)$ to the multilinear case: $\sum n_i - \max(n_i)+1$. We also propose a variant of Fr\"oberg's conjecture which allows us to estimate the complexity of solving overdetermined sparse systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.