Abstract
This paper considers three problems in sparse filter design, the first involving a weighted least-squares constraint on the frequency response, the second a constraint on mean squared error in estimation, and the third a constraint on signal-to-noise ratio in detection. The three problems are unified under a single framework based on sparsity maximization under a quadratic performance constraint. Efficient and exact solutions are developed for specific cases in which the matrix in the quadratic constraint is diagonal, block-diagonal, banded, or has low condition number. For the more difficult general case, a low-complexity algorithm based on backward greedy selection is described with emphasis on its efficient implementation. Examples in wireless channel equalization and minimum-variance distortionless-response beamforming show that the backward selection algorithm yields optimally sparse designs in many instances while also highlighting the benefits of sparse design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.