Abstract

Confronted with the explosive growth of web images, the web image annotation has become a critical research issue for image search and index. Sparse feature selection plays an important role in improving the efficiency and performance of web image annotation. Meanwhile, it is beneficial to developing an effective mechanism to leverage the unlabeled training data for large-scale web image annotation. In this paper we propose a novel sparse feature selection framework for web image annotation, namely sparse Feature Selection based on Graph Laplacian (FSLG)22FSLG: sparse Feature Selection based on Graph Laplacian.. FSLG applies the l2,1/2-matrix norm into the sparse feature selection algorithm to select the most sparse and discriminative features. Additional, graph Laplacian based semi-supervised learning is used to exploit both labeled and unlabeled data for enhancing the annotation performance. An efficient iterative algorithm is designed to optimize the objective function. Extensive experiments on two web image datasets are performed and the results illustrate that our method is promising for large-scale web image annotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.