Abstract
Several attempts to estimate covariance matrices with sparsity constraints have been made. A convex optimization formulation for estimating correlation matrices as opposed to covariance matrices is proposed. An efficient accelerated proximal gradient algorithm is developed, and it is shown that this method gives a faster rate of convergence. An adaptive version of this approach is also discussed. Simulation results and an analysis of a cardiovascular microarray confirm its performance and usefulness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.