Abstract

The algorithm design of compatible detection speed and accuracy based on LiDAR point clouds is a challenging issue in various practical applications of 3D object detection, including the field of autonomous driving. This paper designs a single-stage object detection algorithm that is lightweight and compatible with detection speed and accuracy for the above issue. To achieve these objectives, we propose a framework for a 3D object detection algorithm using a single-stage detection network as the backbone network. Firstly, we design a dual feature extraction module to reduce the occurrence of vehicle miss and error detection problems. Then, we use a multi-scale feature fusion scheme to fuse feature information with different scales. Furthermore, we design a data enhancement scheme suitable for this network architecture. Experimental results in the KITTI dataset show that the proposed method achieves improvement ratios of 38.5% for the detection speed and 2.88% ∼\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim $$\\end{document} 13.65% in terms of the average precision of vehicle detection compared to the existing algorithm based on single-stage object detection (SECOND).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call